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Abstract: This article reports the synthesis of PbO doped MgZnO (PbO@MgZnO) by a co-precipita-

tion method, followed by an ultrasonication process. PbO@MgZnO demonstrates a significant ad-

sorption capability toward Magenta Dye (MD). The greatest adsorption capability was optimized 

by varying parameters such as pH, MD concentration, and adsorbent dose. The kinetics study illus-

trates that the adsorption of MD on PbO@MgZnO follows the pseudo-second-order. The isotherm 

study revealed that Langmuir is best fitted for the adsorption, but with little difference in the R2 

value of Langmuir and Freundlich, the adsorption process cloud be single or multi-layer. The max-

imum adsorption capacity was found to be 333.33 mg/g. The negative ΔG refers to the spontaneity 

of MD adsorption on PbO@MgZnO. The steric parameters from statistical physics models also favor 

the multi-layer adsorption mechanism. As a function of solution temperature, the parameter n pat-

tern has values of n = 0.395, 0.290, and 0.280 for 298, 308, and 318 K, respectively (i.e., all values were 

below 1). Therefore, horizontal molecule positioning and multiple locking mechanisms were impli-

cated during interactions between MD and PbO@MgZnO active sites. 

Keywords: PbO@MgZnO; Magenta Dye; statistical physics models; multi-layer adsorption; reuse 

study 

 

1. Introduction 

Dye pollution is a major organic hazard that is faced by the world [1–3]. The produc-

tion and use of dye are increasing day by day [4]. Dye is used as a coloring agent in many 

industries, but its dark side is its carcinogenic nature; long-term inhalation causes lung 

cancer [5–7]. Due to the adverse impact of dye on humans as well as ecosystems, scientists 

are trying to develop new methods to easily remove dye from liquid or wastewater [8–

11]. 

In addition to being esthetically objectionable, releasing the dye waste products into 

the surrounding atmosphere impedes the transfer of solar light to receiving water bodies, 

thereby reducing the dissolved oxygen content and photosynthesis [12–14]. These can in-

duce inflammation of the skin, dermatitis, allergy, cancer, or genetic mutations in hu-

mans. Dye is not biodegradable [15–18]. Ecological disaster results from the discharge of 
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certain colorful effluents without efficient treatment. Thus, an important activity is to de-

colorize dye-laden effluents before releasing them into natural streams [19–25]. 

The adsorption approach is very successful among different techniques of color re-

moval. This procedure is usually used in pretreatment or specialized wastewater treat-

ment [26–28]. The ability of the dyeing depends, however, on the form of sorbent. Finding 

an adsorbent with a high adsorbent potential that is readily accessible, is, therefore, an 

enormous task. Moreover, lately, much attention has been paid to the sorbing products 

derived from agricultural or industrial waste [29–31]. 

In the last few years, we have synthesized metal ion sensors and fabricated a few 

metal oxides to solve some environmental issues like water pollution, alternative for fuels 

and energy, etcetera [32–43]. In the current article, we synthesized PbO@MgZnO and used 

it for the adsorption of MD dye. The MD adsorption, kinetic order, thermodynamic, and 

multilayer models with the statistical interpretation of various parameters and their sig-

nificance are also studied. The study also makes the bridge between the experimental and 

theoretical models (kinetic, isotherm, and multilayer models). 

2. Experimental 

2.1. Chemicals and Materials 

All chemicals for the synthesis of nanomaterials and application experiments are of 

analytical grade and are obtained by Fisher Scientific. Mili Q water was used to produce 

the stock and working solution for the experiments. 

2.2. Preparation of PbO@MgZnO 

The three solutions of Pb(CH3COO)2, MgNO3, and ZnCl2 (gm added) in the ratio of 

0.02:0.1:1 were prepared. 1 mL of tween 80 is mixed in 25 mL of water and stirred till 

proper mixing. In the next step, Pb(CH3COO)2, MgNO3, ZnCl2, and tween 80 solutions are 

mixed and stirred at 50 °C for 30 min. After that, the solution is transferred in an ultrason-

ication bath, with the temperature fixed at 40 °C. 10 N NaOH solutions are prepared and 

dropwise added in the above solution and sonicated for 1.5 h. The precipitation occurred 

in the solution and the solution become viscous. The solution is filtered and washed using 

distilled water and dried in the oven at 120 °C for 5 h and calcinated in a muffle furnace 

at 450 °C for up to 3 h. 

2.3. Characterization 

The FE-SEM was used to (Make-Bruker Modal-S-4800) observe the morphology of 

the PbO@MgZnO with a driving voltage of 15 kV. The concentration of each molecule in 

the metal oxide nanoparticle is illustrated by the EDAX scan on PM picture dimension: 

500 × 375 Mag: 40,000 × HV: 15.0 kV. Functional group analysis was done on the FTIR 

range of 500–4000 cm−1 (Model: FT-IR Bruker). 

2.4. Mathematical Modeling for the MD Adsorption 

The use of conventional models, however, has led to a narrow description of the ab-

sorption process, because the models’ parameters are analytical and do not have physical 

correlates. This model has been built based on basic assumptions for processes of adsorp-

tion and/or interactions between adsorption and adsorbate, thus resulting in an imperfect 

interpretation of color extraction, technically. An advanced multi-layer model (general-

ized model) was used here to attempt a theoretical interpretation of the MD molecule or 

adsorption process. Please notice that this model has properties parameters like the phys-

ical meaning of the phase of adsorption. Contrary to the overall assumption of Langmuir, 

the model of statistic physics suggests that a fixed number (which may be equal, less, or 

greater than 1) is the major active site, as the active MD-dye molecules site. This parameter 

will then provide function knowledge. Data modeling is presumed to be based on the 

assimilation of a certain number of layers of the dye molecules on the surface of 
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PbO@MgZnO, which is dependent on the absorption temperature. This multi-layer source 

has surface adsorption energy: MD-PbO@MgZnO interacts with surface adsorption en-

ergy, and MD-MD dye molecule interaction, which has second surface adsorption energy. 

The following mathematical model explains the difference between the amounts of ad-

sorbed MD dye: 

Monolayer Model 1: 
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The design parameters are as follows: n is the number of MD dye molecules adsorbed 

into the PbO@MgZnO, Nm is receptor site density, C1 and C2 are quasi-saturation, and N2 

is the second energy layer with a global formed number of layers equal to 1 + N2, respec-

tively. Different adsorption scenarios (1 + N2) can be used in this parameter because N2 

can equal 0, 1, 2, 3, 4, etc. MD adsorption was observed by the parameter value of this 

model. A certain number of molecular levels (0, 1, 2, 3, etc.) are generated to adsorb the 

dye on PbO@MgZnO. The parameters of the computational model were calculated using 

the Levenberg-Marquardt Equation and using non-linear regression of experimental ad-

sorption isotherms, the R2 determination coefficient was defined. To choose a single layer, 

double layer, or three-layer adsorption model, the N2 was also set to 0, 1, or 2 during the 

data fitting process. The test model determination coefficients ranges in between R2 0.997 

and 0.998 and thus provide a satisfactory comparison between the experimental results 

and the model-projected values. A general examination of the model parameters indicates 

that it is best to describe the adsorption function with the simplified model. This common 

adsorption model was then potentially used to describe the MD-PbO@MgZnO adsorption 

process. The following calculations have been used to measure adsorption energies: 

ε� =  RT ln  �
��

��

� (1)

ε� =  RT ln  �
��

��

� (2)
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3. Results and Discussion 

3.1. Properties of PbO@MgZnO 

The PbO@MgZnO was formed using a co-precipitation method followed by ultra-

sonication for up to 1.5 h. The synthesized PbO@MgZnO is characterized by FE-SEM, 

TEM, EDX, XRD, and nitrogen sorption techniques. The average size of the nanoparticle 

measure was 22.2 nm, as illustrated in the high magnification Figure 1a. The low magni-

fication image (Figure 1b) of SEM revealed that some particles are in unit form and some 

look big due to the clubbing of small nanoparticles over one another. However, during 

experiments, it is observed that the particle is easily dispersed in unit form when it is 

poured into the dye solution. TEM images (Figure 1c) confirm the morphology, size, and 

clubbing of small nanoparticles observed in FE-SEM images. EDX (Figure 1d) illustrates 

that the adsorbent is made up of oxide of Pb, Mg, and Zinc, having proper concentration 

without any impurities. The crystalline nature of XRD was revealed in the peaks at 35°, 

38°, 43°, 50°, 52°, 57°, 61°, and 66° for PbO@MgZnO (Figure 1e). The N2 adsorption-de-

sorption graph (Figure 1f) depicts the unrestricted mono/multilayer adsorption at the 

macroporous adsorbent surface and reveals the 128 m2/g of the specific surface area of 

PbO@MgZnO. 

 

 
 

(a) 

(b) 
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Figure 1. (a) SEM image at 400 nm for size, (b) SEM image at high low magnification, (c) TEM image, 

(d) EDX spectra, (e) XRD spectrum, and (f) adsorption-desorption isotherm curve for nitrogen of 

PbO@MgZnO. 

3.2. Effect of pH Variation, Contact Time, and Adsorbent Dose 

pH plays a crucial role in the adsorption of dye on nanoparticles. The impact of pH 

on color adsorption utilizing PbO@MgZnO was assessed at different pH ranges from 1 to 

10. Figure 2a illustrates the most notable adsorption of 94.2% at pH 6.0, this is due to the 

protonation on PbO@MgZnO. MD was protonated and the increment in % adsorption 

was due to the electrostatic attraction with PbO@MgZnO at this pH. We illustrated the 

test by changing the time from 0–90 min in Figure 2b, the greatest adsorption of MD was 

accomplished after 40 min, which was almost 98.4%. This adsorption is obtained since 

most active sites are accessible, and in this contact time the exchanging of molecules for 

adsorption interactions was completed, hence 40 min time is sufficient. In batch tests, the 
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impact of PbO@MgZnO dose on MD adsorption was investigated by adding adsorbents 

in the 0.05–0.2 g range to the 50 mL of dye solution (10 mg/L to 200 mg/L dye concentra-

tion). Figure 2c illustrates that the efficiencies of adsorption (%) improved from 91.49 to 

97.68% by an increase of 0.05 to 0.20 g adsorbent, owing to the more available adsorption 

sites. 
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Figure 2. (a) MD adsorption changes with pH (PbO@MgZnO = 0.2 g, MD concentration = 50 mg/L, 

90 min), (b) effect of time on the adsorption of MD dye, and (c) variation of PbO@MgZnO dose (at 

25 °C). 

3.3. Rate of Adsorption and Thermodynamic Parameter 

The energy of MD adsorption on PbO@MgZnO has been analyzed using models sug-

gested by Ho and McKay [44–47]. The kinetics study affirmed that the adsorption of dye 

on PbO@MgZnO demonstrates the pseudo-second-order (Figure 3 and Table 1) (Equa-

tions are given in supplement file). Using the famous Langmuir [48,49] and Freundlich 

[50,51] models, the adsorption of MD was analyzed (Equations are given in supplement 

file). Figure 4a,b illustrate isotherms of adsorption, and the measured parameters ap-

peared in Table 2. So, we can conclude that the above study could be a homogenous ad-

sorption of a monolayer, and due to good agreement of the Freundlich model, double and 

multilayer models can also be followed by the adsorption process. The separation factor 

(RL) is in between 0 to 1 and supports successful adsorption (Figure 4c). The MD dye ad-

sorbed on PbO@MgZnO as a function of the temperature of the system appeared in Figure 

4d. The ΔG was determined to be −8605.89 Jmol−1. The negative ΔG refers to the sponta-

neity of MD adsorption on PbO@MgZnO and demonstrates that the adsorption proceeds 

towards stability [52,53]. 
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Figure 3. MD kinetic plots on PbO@MgZnO at different initial MD concentrations. 
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Figure 4. (a) Langmuir isotherm graph, (b) Freundlich plot for the adsorption, (c) separation factor 

for the adsorption of MD onto PbO@MgZnO, and (d) temperature variation graph of the adsorption 

of MD on PbO@MgZnO. 

Table 1. Kinetic Model parameters. 

Kinetic Model Parameters 

Concentration (ppm) 10 20 50 100 150 200 

Kadgmg−1 min−1 0.0415 0.0136 0.0026 0.0018 0.0012 0.0013 

qe (mg/g) 10.64 21.74 52.63 100.00 166.67 333.33 

R2 0.999 0.999 0.998 0.998 0.999 0.999 

Table 2. Data from isotherm. 

Langmuir Freundlich 

KL 32.25 log Kf 2.176 

qmax = KL/αL 333.33 1/n 0.287 

R
2
 0.99 R2 0.997 

4. Interpretation of the Steric Parameters 

An important parameter n is the orientation of the MD molecules on the 

PbO@MgZnO surface (either horizontally or vertically). If n is fewer or more than one, 

this is likely due to the adsorption incorporation of the isolated MD molecules being hor-

izontal or vertical. In addition, multi-docking (n < 1) or multimolecular (n > 1) can be used 
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to adsorb MD dye on PbO@MgZnO’s (Figure 5). Consequently, an MD molecule can be 

adsorbed at n < 1 on the various active sites of PbO@MgZnO, although, many dye mole-

cules can also be adsorbed at n > 1 [54–56]. Provided in Figure 6a and Table 3 are the values 

of the other model parameters, including parameter n. n = 0.395, 0.290, and 0.280, respec-

tively, at 298, 308, and 318 K (i.e., all values were below 1). MD-to-PbO@MgZnO active-

site interactions thus incorporated horizontal molecular positioning and multi-locking 

processes [55,56]. This finding demonstrates that single MD molécules interacted in the 

horizontal direction with various active PbO@MgZnO sites and adsorbed MD molecules 

[55,56]. In general (n < 0.5): this scenario revealed that an MD molecule may be interacting 

with at least two PbO@MgZnO adsorption sites. Then, the best-fitting model is used to 

derive Nm, Q, and parameters, as indicated in Table 3. The RMSE value of models 1 to 

model 3 is provided in Table 4; the R2 value for model 3 is very high, which demonstrates 

that model 3 is best fitted for the current adsorption mechanism. 

Table 3. Summary of parameters of the statistical model obtained from MD adsorption onto 

PbO@MgZnO. 

Tempera-

ture (K) 
Nm (mg/g) n Nt = 1 + N2 ε1 (kJ/mol) ε2 (kJ/mol) Qsat (mg/g) 

298 210 0.385 1.002 11.195 44.744 81.011 

308 75 0.290 1.001 12.643 55.225 21.771 

318 4.5 0.280 1.0001 13.107 57.018 1.260 

Table 4. RMSE and R2 values for the under-study models for the system of MD on PbO@MgZnO. 

Temperature 298 308 318 

(K) R2 RMSE R2 RMSE R2 RMSE 

Model 1 0.988 0.6168 0.995 1.8782 0.992 9.094 

Model 2 0.983 0.6899 0.996 1.3724 0.994 0.836 

Model 3 0.997 1.4534 0.998 5.415 0.998 4.157 

 

Figure 5. Fitting of mathematical model for the system MD-PbO@MgZnO @ three different temper-

atures. 
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The shift in the PbO@MgZnO active site number (Nm parameter) for the adsorption 

temperature is illustrated in Figure 6b. For MD adsorption at 298, 308, and 318 K, see Table 

3 for Nm values, which were 210, 75, and 4.5 mg/g, respectively. The Nm value decreases 

due to the n parameter decrease. Usually, a decline in the number of PbO@MgZnO func-

tional positions occupied was the product of the adsorption mechanism consistent with 

the decline of the n parameter and, subsequently, the reduction of the Nm parameter. The 

reduction in the Nm values often indicates the degradation of the contribution of this ad-

sorbent’s new active sites (PbO@MgZnO) to the phase of MD adsorption. 

To complement an understanding of the adsorption process, the assessment of com-

plete adsorption layers is necessary [56]. Nt values for MD dye adsorption were estimated 

at 298, 308, and 318 K are 1.008, 1.001, and 1.0001, (Table 4). During a minor shift in Nt 

values at all temperatures, the negligible position of this parameter in regulating the ad-

sorption mechanism was established. Therefore, the adsorption function may be omitted 

from the influence of the parameter N2. 

Qsat values are determined to classify the efficacy of MD dye adsorption from an 

aqueous solution using the PbO@MgZnO. The value for Qsat is illustrated in Figure 6c at 

all temperatures measured, and Table 3 provides a summary of these findings. The value 

of Qsat at 298, 308, and 318 K, were 81.01, 21.77, and 1.26 mg/g respectively. The low in-

teraction between MD molecules and PbO@MgZnO was confirmed by decreasing Qsat 

values with temperature. The decrease in solution temperature and adsorption capability 

can be attributed to the decline of the dye molecules’ mobility, which often precludes the 

MD’s contact with a wide number of PbO@MgZnO receptor sites [56]. The analysis Table 

5 illustrates that PbO@MgZnO can be advised as an efficient adsorbent to treat polluted 

MD dye from waste water.  

The ε1 and ε2 present interactions between molecules and the surface of the first and 

second layers, respectively. We found that both adsorption energies increased concerning 

temperature, due to the thermal motions. The adsorption energy at 298 K was 44.74 

kJ/mol, and the adsorption energy at 318 K was 57.01 kJ/mol (Figure 6d). This increase in 

energy was explained by the influence of temperature on the surface, which excited the 

atoms, and which could easily record adsorbed atoms in the surface volume. 
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Figure 6. Graph of (a) number of molecules per site (n), (b) Nm, (c) Qsat, and (d) adsorption energies 

vs. temperature. 

Table 5. Comparison of adsorption capacity of PbO@MgZnO with other adsorbents. 
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Adsorbent Qmax (mg/g) Reference 

Thorn apple leaf powder 1.059 [57] 

Graphene oxide modified sugarcane bagasse 145 [58] 

H2SO4 activated immature Gossypium Hirsutum 

seeds 
86.24 [59] 

Gracilaria edulis algae  1250 [60] 

Lyngbya wollei algae  333 [60] 

Fe/Cu nanocomposites 235 [61] 

Natural Clay 198 [62] 

PbO@MgZnO 333 Present study 

5. Reuse of PbO@MgZnO 

To investigate the reuse capacity of PbO@MgZnO, the adsorbed color on nanoparti-

cles was desorbed utilizing hydrochloric acid (0.1 M), and PbO@MgZnO was repeatedly 

reused up to five times. PbO@MgZnO demonstrated a good % adsorption capacity even 

after reuse five times (Figure 7). The aforesaid study and its findings indicate that 

PbO@MgZnO is a suitable material for industrial wastewater treatment. 

 

Figure 7. Reuse of PbO@MgZnO for the MD dye. 

6. Conclusions 

PbO@MgZnO demonstrates a significant adsorption capability toward Magenta Dye 

(MD). The greatest adsorption capability was optimized by varying factors such as pH, 

MD concentration, and adsorbent dose. The negative ΔG refers to the spontaneity of MD 

adsorption on PbO@MgZnO. The steric parameters from statistical physics models also 

favor the multilayer adsorption mechanism. At 298, 308, and 318 K, the parameter n pat-

tern as a function of solution temperature is n = 0.395, 0.290, and 0.280, respectively (i.e., 

all values were below 1). MD-to-PbO@MgZnO active-site interactions thus incorporated 

horizontal molecular positioning and multi-locking processes. Mathematical models’ 

study is also in favor of the multi-layer adsorption phenomenon of MD onto 
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PbO@MgZnO. Therefore, this multifunctional nanocomposite could be used as an adsor-

bent as well. 
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